- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Porfiri, Maurizio (1)
-
Pugno, Nicola M (1)
-
Yaqoob, Basit (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ongoing efforts seek to unravel theories that can make simple, quantitative and reasonably accurate predictions of the morphological adaptive changes that arise with the size variation. Yet, relatively scant attention has been directed towards lateral undulatory locomotion. In the current study, we explore: (i) the constraints imposed by the variation of length and mass in viscous and dry friction environments on the cost of transport (COT) of lateral undulatory locomotion and (ii) the role of the body, environment and input oscillations in such an intricate interplay. In a dry friction environment, minimum COT correlates with stiffer and longer bodies, higher frictional anisotropy and angular amplitudes greater than approximately 10o. Conversely, a viscous environment favours flexible long bodies, higher frictional anisotropy and angular amplitudes lower than approximately 30o. In both environments, optimizing mass and maintaining low angular frequencies minimizes COT. Our conclusions are applicable only in the low-Reynolds-number regime, and it is essential to consider the interdependence of parameters when applying the generalized results. Our findings highlight musculoskeletal and biomechanical adaptations that animals may use to mitigate the consequences of size variation and to meet the energetic demands of lateral undulatory locomotion. These insights enhance foundational biomechanics knowledge while offering practical applications in robotics and ecology.more » « lessFree, publicly-accessible full text available April 1, 2026
An official website of the United States government
